Toward achieving megatesla magnetic fields in the laboratory

Recently, a research team at Osaka University has successfully demonstrated the generation of megatesla (MT)-order magnetic fields via three-dimensional particle simulations on laser-matter interaction. The strength of MT ...

New material can generate hydrogen from salt and polluted water

Scientists of Tomsk Polytechnic University jointly with teams from the University of Chemistry and Technology, Prague and Jan Evangelista Purkyne University in Ústí nad Labem have developed a new 2-D material to produce ...

Hot electrons harvested without tricks

Semiconductors convert energy from photons (light) into an electron current. However, some photons carry too much energy for the material to absorb. These photons produce "hot electrons," and the excess energy of these electrons ...

Slow 'hot electrons' could improve solar cell efficiency

Photons with energy higher than the band gap of the semiconductor absorbing them give rise to what are known as hot electrons. The extra energy in respect to the band gap is lost very fast, as it is converted into heat and ...

'Hot' electrons heat up solar energy research

Solar and renewable energy is getting hot, thanks to nanoscientists—those who work with materials smaller than the width of a human hair—at the U.S. Department of Energy's (DOE) Argonne National Laboratory who have discovered ...

Wet plasma makes a nano-sized splash

Oil and water do not mix, but a KAUST team has exploited the distinct interfaces between these substances to make plasma generation in liquids more efficient. This approach holds promise for high-yield synthesis of nanomaterials ...

page 2 from 6